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1 Probability and Counting

1.1 Notes

• We express probability mathematically using sets.

• We use sample spaces specifically, where a sample space is the set of
all possible outcomes in, say, an experiment.

• The sample space has subsets called events. We say an event has oc-
curred if the outcome is in the event.

• The mass of an outcome is its probability.

• Example: Let’s say we flip a coin twice. This lends itself to four pos-
sible outcomes, and we have a sample space S = {HH, TT,HT, TH}
containing those four outcomes. We’re hoping for the event A that both
flips are the same, which is A ⊆ S = {HH, TT}. Since coin flips are
symmetric (i.e. equally likely by nature), the mass of each outcome is
equal.

• Let A and B be events such that A,B ⊆ S. A ∪ B is the event that
occurs if either A or B occur. A ∩ B is the event that occurs if both
A and B occur. Don’t let the phrasing confuse you; remember that an
event is said to occur if the outcome is in the event, and nothing else.

• The naive definition of probability refers to the oldest definition of
probability.

• Here, the number of possible outcomes |S| and the total number of ways
an event could occur |A| were counted, and the latter was divided by the
former to obtain the naive probability of event A: Pnaive(A). We can
express this generally:

Pnaive(A) =
|A|
|S|

• We also find that the probability of a complement Ac occurring — basi-
cally the probability that A doesn’t occur — is 1−P (A). We can derive
this as such:

P (Ac) =
|Ac|
|S| =

|S|− |A|
|S| = 1 =

|A|
|S| = 1− P (A)

• Example: Going back to our previous example. The probability of the
event A — where both of our coinflips land on the same side — occurring
is 2

4
. 2 is the number of outcomes within that event, and 4 is the total

number of outcomes possible. The probability of our event not occurring,
so Ac, is 1− 2

4
= 2

4
.
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• The faults of the naive definition are: that it assumes each outcome has
equal mass, which isn’t always the case. It also assumes a finite, or
countable, number of outcomes (that we can divide by).

• If you’re looking for the number of possible subsets in a sample space S,
or any set really, you get that number by 2n, where n is the number of
elements in the set.

• The number of possible outcomes can be counted in a number of ways.
One technique is the multiplication rule. This rule states that in com-
pound experiments, the total number of possible outcomes is the product
of the total number of outcomes in each sub-experiment.

• Example: Referring back to our coin-flipping example. It is itself a
compound experiment, with two experiments (coin-flips) performed se-
quentially. Each coin-flip has two possible outcomes. Therefore, to get
the total possible outcomes, we do 2·2 = 4. If there were four coin-flips in
our experiment, the total possible outcomes would be 2·2·2·2 = 16. It can
be expressed as 2n, where n is the number of coin-flip sub-experiments,
and 2 is the total number of possible outcomes in each sub-experiment.

• Note that the order the sub-experiments are multiplied in doesn’t mat-
ter since multiplication is — of course — commutative. That does not
mean the order the sub-experiments are performed in doesn’t matter, of
course, since that depends on the experiment itself. In our coin-flipping
experiment, however, the order is irrelevant.

• One use of the multiplication rule is in sampling. Sampling involves
picking a group of k samples out of a larger group of n objects. The
multiplication rule helps us determine how many possible combinations
of samples we can pick out.

• There are two main types of sampling. Sampling with replacement
means that, when we pick a sample, that does not preclude it from being
picked again. To determine the total possible number of combinations
in such a case, we use nk; where n is the number of objects, and k is the
number of samples we need.

• Example: Let’s say we’re picking marbles one-by-one from a jar with
20 marbles. We will pick the marble, examine it, put it back in, and then
pick another marble. This is ’with replacement’, since there is a chance
that we may pick the same marble multiple times (we’re putting it back
in the jar, after all). We will repeat this process 10 times. The number
of possible combinations, in this case, is 2010 = 1.024 · 1013.

• Sampling without replacement means that an object, once chosen,
will not be chosen again. Where n is the total number of objects, and
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k the total number of samples, there are n(n− 1)...(n− k + 1) possible
outcomes, so long as k ≤ n.

• Example: There are k people in a room, and we are to find the prob-
ability that two or more people have the same birthday. Assume we
ignore leap year birthdays, and that the naive definition of probability is
justified.

– There are 365 possible birthdays. Thus, there are thus 365k possible
combinations of birthdays among the group.

– Within this set, the number of combinations where two or more
people share a birthday is... hard to obtain.

– Luckily, we can find its complement by sampling with replacement.
This is because sampling with replacement gives us the number of
possible combinations of birthdays where each birthday does not
repeat — the opposite of what we’re looking for.

– Using the complement rule, we get the naive probability of two
people sharing a birthday in said room as:

1− 365Pk

365k

– A surprising, and counterintuitive, fact is that if we were to assume
23 people in the room, and thus k = 23, we would get:

1− 365(365− 1)...(365− 24)

36523
= 50.73%

Yes, a chance greater than 50% that two of them share a birthday!

• Sampling without replacement comes itself in two forms: one where order
matters, and one where it doesn’t. In the former case, the aforementioned
method — which we call permutation — is used to determine the
number of possible samples nPr. If order doesn’t matter, then we use
combination instead to get nCr.

• Similarly, we have the same two forms of sampling with replacement.
We’ve already figured out how to determine the number of possible sam-
ples with replacement when order does matter: nk. When order doesn’t
matter, we use the formula: (n+k−1)Pk

• Make sure to label your experiments and outcomes. For instance, in
our coin flip experiment, we ought to label the first coin flip A, and the
second coin flip B. We also ought to label the heads outcome ’H’ or 1,
and tails ’T’ or 0. This is good practice and helps you avoid mistakes.
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• One thing to consider in counting problems is overcounting. In that
case, you have to adjust the obtained value for overcounting by a factor
c, by dividing it by c.

• Example: There are n people at a meeting. Each person has to shake
hands with every other person in the meeting; so, n − 1 people. To
determine how many hands are getting shaked, we use the multiplication
rule: n people multiplied by the n− 1 other people that they’re going to
handshake for n(n − 1) total handshakes. But there is an overcounting
problem here: for n = 2, we get 2 total handshakes, and this is wrong.
Two people at the meeting would only have to shake hands once. We’re
overcounting by a factor c = 2, and we need to adjust for this. Thus, we
get a final formula of:

n(n− 1)

2

• A story proof is a proof that relies on the fact that there are usually
multiple ways of counting things. Thus, we find two ways to count the
same thing and intuit why they come out to the same result. These
usually promote greater understanding and intuition of the problem in
question than an algebraic proof.

• We have considered the naive definition of probability, and now we will
create our own non-naive definition of probability:

– Assuming a probability space P consists of sample space S, a
probability function P (A) takes an event A such that A ⊆ S
and returns a real number such that 0 ≤ P (A) ≤ 1.

– The probability of the null set P (∅) is 0; the probability of the
sample space S, P (S), is 1.

– If the elements of event A (A1, A2, ..., Aj) are disjoint (mutually
exclusive), then:

P (
∞󰁞

j=1

Aj) =
∞󰁛

j=1

P (Aj)

• There are two ways to ’view’ probability, which is seperate from a def-
inition of probability. These have to do with how people think we can
utilize probability.

– The frequentists view probability as showing how frequently, in
the long-run, an event will occur. For instance, the 50/50 proba-
bilities on a coinflip mean that over a 1000 flips, 50% (500) will be
heads, and the other 500 tails.

– The Bayesians view probability as the degree of belief about an
event. For instance, if I flip a coin they’ll agree that there is a
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50% chance it will be heads-up — their prior possibility. Once I’ve
flipped the coin, and they’ve seen that it is indeed a heads, they’ll
say that the posterior possibility is 100%.

• There are three further theorems that help our definition:

– P (Ac) = 1− P (A)

– If A ⊆ B, then P (A) ≤ B

– P (A ∪B) = P (A) + P (B)− P (A ∩B)

• The third theorem leads into the inclusion-exclusion principle. If you
are counting the number of elements in the union of two sets A and B,
you do it as such:

|A ∪B| = |A|+ |B|− |A ∩B|

If you added the number of elements in A and B, that would lead to
you counting the elements in the intersection twice. Thus, you need to
subtract it once from the sum.

• This principle can be generalized:

P

󰀣
n󰁞

i=1

Ai

󰀤
=

n󰁛

i=1

P (Ai)−
󰁛

i<j

P (Ai ∩ Aj) +
󰁛

i<j<k

P (Ai ∩ Aj ∩ Ak)+

· · ·+ (−1)n−1
󰁛

i<...<n

P

󰀣
n󰁟

i=1

Ai

󰀤

1.2 Exercises

1. How many ways are there to permute the letters in the word MISSIS-
SIPPI? There are two ways to do this. The first involves accounting for
overcounting, while the second uses the binomial coefficient:

11!

4!4!2!
=

󰀕
11

1

󰀖󰀕
10

4

󰀖󰀕
6

4

󰀖󰀕
2

2

󰀖
= 34, 650

2. (a) How many 7-digit phone numbers are possible, assuming that the
first digit can’t be a 0 or a 1? There are 10 digits to pick from
— except for the first phone number digit, where 0 and 1 are not
allowed — for our 7-digit phone number. We can express this using
the multiplication rule:

8 · 106 = 8, 000, 000
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(b) Re-solve (a), except now assume also that the phone number is not
allowed to start with 911. The number of outcomes where the phone
number starts with 911 are: 1·1·1·104 = 10, 000. Subtract this from
the answer to (a), and we get 7, 990, 000 possible phone numbers.

3. Fred is planning to go out to dinner each night of a certain week, Mon-
day through Friday, with each dinner being at one of his ten favorite
restaurants.

(a) How many possibilities are there for Fred’s schedule of dinners for
that Monday through Friday, if Fred is not willing to eat at the
same restaurant more than once? 10P5 = 30, 240 possible schedules.

(b) How many possibilities are there for Fred’s schedule of dinners for
that Monday through Friday, if Fred is willing to eat at the same
restaurant more than once, but is not willing to eat at the same
place twice in a row (or more)? In terms of the multiplication rule:

10 · 94 = 65, 610 possible schedules.

4. A round-robin tournament is being held with n tennis players; this means
that every player will play against every other player exactly once.

(a) How many possible outcomes are there for the tournament (the
outcome lists out who won and who lost for each game)? Each
player has to face (n − 1) opponents in matches, and there are n
players, and adjusting for overcounting by a factor of 2, we get

n ∗ (n− 1)

2
total matches

Each match has only two possible outcomes (assuming no draws).
Thus, the number of total possible outcomes is:

2
n∗(n−1)

2

(b) How many games are played in total? We determined this previ-
ously:

n ∗ (n− 1)

2
total matches

5. A knock-out tournament is being held with 2n tennis players. This means
that for each round, the winners move on to the next round and the losers
are eliminated, until only one person remains. For example, if initially
there are 24 = 16 players, then there are 8 games in the first round,
then the 8 winners move on to round 2, then the 4 winners move on to
round 3, then the 2 winners move on to round 4, the winner of which is
declared the winner of the tournament. (There are various systems for
determining who plays whom within a round, but these do not matter
for this problem.)
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(a) How many rounds are there? There are n rounds.

(b) Count how many games in total are played, by adding up the num-
bers of games played in each round.

2n−1 + · · ·+ 2n−n

6. There are 20 people at a chess club on a certain day. They each find
opponents and start playing. How many possibilities are there for how
they are matched up, assuming that in each game it does matter who
has the white pieces (in a chess game, one player has the white pieces
and the other player has the black pieces)? 20!

10!
possible matches.

7. Two chess players, A and B, are going to play 7 games. Each game has
three possible outcomes: a win for A (which is a loss for B), a draw (tie),
and a loss for A (which is a win for B). A win is worth 1 point, a draw
is worth 0.5 points, and a loss is worth 0 points.

(a) How many possible outcomes for the individual games are there,
such that overall player A ends up with 3 wins, 2 draws, and 2
losses? Encoding these results as a string gives us: WWWDDLL.
We need to figure out the possible ways to permute this, and those
are the possible outcomes. Thus:

󰀕
7

3

󰀖󰀕
4

2

󰀖󰀕
2

2

󰀖
= 210

(b) How many possible outcomes for the individual games are there,
such that A ends up with 4 points and B ends up with 3 points?
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