Notes on 'Linear Algebra, by Serge Lang'

Ghassan Shahzad

March 27, 2024

1 Vectors

1.1 Definition of Points in Space

Notes

Definition 1.1.1. A co-ordinate represents a point on a line, which we can also call 1-space. A pair of co-ordinates represent a point on a **plane**, or 2-space. A trio of co-ordinates represent a point on 3-space, and so on, such that a point with n co-ordinates (what we call an n-tuple) is a point on n-space. An n-tuple can be represented as $(x_1, x_2, x_3, ..., x_n)$, and we denote an n-space as \mathbb{R}^n .

Example 1.1.1. A point on 1-space, 2-space, and 3-space respectively.

Definition 1.1.2. We can say that higher dimensional spaces are **products** of lower dimensional spaces, the result of putting them side-by-side.

Example 1.1.2. $\mathbb{R}^3 = \mathbb{R}^2 \cdot \mathbb{R}^1$

Definition 1.1.3. To add two points, we sum each corresponding co-ordinate in each, and expresss the results as a point. For instance, if A and B are two points in *n*-space, their sum would be: $A + B = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$. In addition operations involving points, the following properties are observed:

- 1. Associativity: (A + B) + C = A + (B + C)
- 2. Commutativity: A + B = B + A
- 3. Identity Element: If O is the origin point, A + O = A
- 4. Inverse Element: Let $A = (a_1, ..., a_n)$ and $-A = (-a_1, ..., -a_n)$. Then A + (-A) = O

Example 1.1.3. Let the points A = (1,3,5), B = (-3,4,9), C = (4,5,9), and O = (0,0,0). The previously defined properties can be demonstrated:

1. Associativity:

$$(A + B) + C = (-2, 7, 14) + (4, 5, 9)$$

= (1, 3, 5) + (1, 9, 18)
= (2, 12, 23)

2. Commutativity:

$$B + A = (-3 + 1, 4 + 3, 9 + 5)$$

= (-2, 7, 14)
= A + B

3. Identity Element:

$$A + O = (1, 3, 5) + (0, 0, 0)$$

= (1, 3, 5)
= A

4. Inverse Element:

$$A + (-A) = (1 - 1, 3 - 3, 5 - 5)$$
$$= (0, 0, 0)$$
$$= O$$

Definition 1.1.4. Representing the addition of vectors geometrically will result in a parallelogram. Vector addition leads to a parallelogram because it's like taking two different paths to reach the **same point**, and the resulting shape formed by these paths is a parallelogram.

Example 1.1.4. Let A = (1, 1), B = (0, 2), A + B = C = (1, 3), and O = (0, 0).

Definition 1.1.5. The negative of a point A, -A, has the exact same magnitude but an opposite direction. We call -A a **reflection** of A through the origin.

Example 1.1.5. Let A = (1, 2), O = (0, 0), and -A = (-1, -2).

Definition 1.1.6. Multiplying a vector A by a scalar c gives us $cA = (ca_1, ca_2, ..., ca_n)$. Scalar multiplication of vectors follows the regular properties of multiplication: namely that c(A + B) = cA + cB or $(c_1 + c_2)A = c_1A + c_2A$.

Geometrically, scalar multiplication of A by a scalar c stretches A if c > 1, shrinks A if 0 < c < 1, and reverses its direction as well if c < 0.

Example 1.1.6. Let $A = (1, 2), x = 2, y = \frac{1}{2}$, and z = -1.

Exercises

1.
$$A = (2, -1), B = (-1, 1)$$

(a) $A + B = (1, 0)$
(b) $A - B = (3, -2)$
(c) $3A = (6, -3)$
(d) $-2B = (2, -2)$
2. $A = (-1, 3), B = (0, 4)$
(a) $A + B = (-1, 7)$
(b) $A - B = (-1, -1)$
(c) $3A = (-3, 9)$
(d) $-2B = (0, -8)$
3. $A = (2, -1, 5), B = (-1, 1, 1)$
(a) $A + B = (1, 0, 6)$
(b) $A - B = (3, -2, 4)$
(c) $3A = (6, -3, 15)$
(d) $-2B = (2, -2, -2)$
4. $A = (-1, -2, 3), B = (-1, 3, -4)$
(a) $A + B = (-2, 1, -1)$
(b) $A - B = (0, -5, 7)$
(c) $3A = (-3, -6, 9)$
(d) $-2B = (2, -6, 8)$
5. $A = (\pi, 3, -1), B = (2\pi, -3, 7)$
(a) $A + B = (3\pi, 0, 6)$
(b) $A - B = (-\pi, 6, -8)$
(c) $3A = (3\pi, 9, -3)$
(d) $-2B = (-4\pi, 6, -14)$

1.2 Located Vectors

Notes

Definition 1.2.1. A located vector is an ordered pair of points which we can express as a line or an arrow. For instance, in the located vector \overrightarrow{AB} , A is the beginning point and B is the end point. We say that vectors with a beginning point of O are located at the origin; those with a beginning point of, for instance, A, are located at A, and so forth. \overrightarrow{AB} is located at A, in this instance.

Example 1.2.1. Let A = (1, 2) and B = (0, 1). Thus, \overrightarrow{AB} could be represented:

Definition 1.2.2. In this plane, $b_1 = a_1 + (b_1 - a_1)$ and $b_2 = a_2 + (b_2 - a_2)$. You can further rearrange these equations to get a_1 and a_2 . And, from this, we can generalize that B = A + (B - A).

Example 1.2.2. Let A = (1, 2) and B = (0, 1). We can prove the previous assertions thus:

- 1. That $b_1 = a_1 + (b_1 a_1)$: 0 = 1 + (0 1);
- 2. That $b_2 = a_2 + (b_2 a_2)$: 1 = 2 + (1 2);
- 3. That B = A + (B A):

$$= (1, 2) + ((0, 1) - (1, 2))$$

= (1, 2) + (-1, -1)
= (0, 1) = B

Definition 1.2.3. We say that two vectors \overrightarrow{AB} and \overrightarrow{CD} are **equivalent** if B - A = D - C. Furthermore, *every* located vector \overrightarrow{AB} can be said to have an equivalent involving the origin point O, because \overrightarrow{AB} can be expressed as equivalent to $\overrightarrow{O(B-A)}$.

Example 1.2.3. Let A = (1, 2), B = (0, 1), and B - A = (-1, -1). (Note the **direction**)

Definition 1.2.4. We say that two vectors \overrightarrow{AB} and \overrightarrow{CD} are **parallel** if B - A = c(D - C), where $c \neq 0$. Furthermore, if c > 0, then the two vectors are parallel in the **same direction**. If c < 0, they are parallel but in the **opposite direction**.

Example 1.2.4. Let A = (1,2), B = (0,1), C = (3,1), D = (2.5,0.5), P = (1,1), and Q = (2,4). Thus, $B - A = \frac{1}{2}(D - C)$, and the two vectors are parallel in the same direction, while \overrightarrow{AB} and \overrightarrow{PQ} are parallel in the opposite directions.

Exercises

- 1. (3,4) = (6,-3) Not Equivalent
- 2. (-4,1) = (-4,1) Equivalent
- 3. (-3, 4, -9) = (-3, 4, 9) Equivalent
- 4. (-3, 0, 9) = (-3, 0, 9) Equivalent
- 5. (3,4) = k(8,-4) Not Parallel
- 6. (-4,1) = -1(4,-1) Parallel
- 7. $(-3, 4, -9) = \frac{1}{2}(-6, 8, -18)$ Parallel
- 8. (-3,0,9) = (-9,0,-27) Not Parallel

1.3 Scalar Product

Notes

Definition 1.3.1. The scalar product, sometimes called **dot product**, of two vectors A and B is obtained through multiplication. In 2-space, this means: $A \cdot B = a_1b_1 + a_2b_2$. In 3-space: $A \cdot B = a_1b_1 + a_2b_2 + a_3b_3$. The scalar of two vectors in *n*-space is thus:

$$A \cdot B = a_1b_1 + a_2b_2 + \ldots + a_nb_n$$

The product of such operations is always a single **number**.

Example 1.3.1. Let A = (1,2) and B = (0,1). The scalar, or dot, product of the two vectors is: $A \cdot B = 1 \cdot 0 + 2 \cdot 1 = 2$.

Definition 1.3.2. There are four properties associated with scalar multiplication:

- 1. $(A+B) \cdot C = CA + CB$
- 2. $A \cdot B = B \cdot A$
- 3. If A = O, then $A \cdot A = 0$. Otherwise, $A \cdot A > 0$.
- 4. If x is a number, then: $xA \cdot B = x(A \cdot B)$.

Definition 1.3.3. Two vectors A and B are said to be **perpendicular**, or **orthogonal**, if their dot product $A \cdot B$ comes out to 0.

Example 1.3.2. Let A = (1,0) and B = (0,1). The scalar product of the two, $A \cdot B$, is thus: $A \cdot B = 1 \cdot 0 + 1 \cdot 0 = 0$. Since the result is 0, the two are vectors are said to be orthogonal, and we can express this geometrically:

Exercises

1. Find $A \cdot A$ and $A \cdot B$ for:

- (a) A = (2, -1), B = (-1, 1), $A \cdot A = 4 + 1 = 5,$ $A \cdot B = 2 \cdot -1 + -1 \cdot 1 = -3.$ (b) A = (-1, 3), B = (0, 4), $A \cdot A = -1 \cdot -1 + 3 \cdot 3 = 10,$ $A \cdot B = -1 \cdot 0 + 3 \cdot 4 = 12.$ (c) A = (2, -1, 5), B = (-1, 1, 1), $A \cdot A = 4 + 1 + 25 = 30,$ $A \cdot B = 2 \cdot -1 + -1 \cdot 1 + 5 \cdot 1 = 2.$ (d) A = (-1, -2, 3), B = (-1, 3, 4), $A \cdot A = -1 \cdot -1 + -2 \cdot -2 + 3 \cdot 3 = 14,$
 - $A \cdot B = -1 \cdot -1 + -2 \cdot 3 + 3 \cdot 4 = 7.$

1.4 The Norm of a Vector